@ NITIDO

Guide to Using NIM.ui.InfiniteScroller

v1.0
10of 10
© 2010, Nitido Inc. Proprietary and Confidential — All rights reserved.

@ NITIDO

Table of Contents

Step 1: Including required dependencies

Step 2: Instantiating the InfiniteScroller Ul control
Column Definitions:

Styling Column Widths:

NN 6 W W

Data Source Definition:

Step 3: Subscribing to the InfiniteScroller's events

o o

Step 4: Updating the InfiniteScroller's row data 1

v1.0
20of 10

© 2010, Nitido Inc. Proprietary and Confidential — All rights reserved.

@ NITIDO

The InfiniteScroller control provides a fluid, multi-page control for displaying tabular data across A-
grade browsers. The Infinite Scroller widget handles datasets of any size, and provides a desktop-
like experience by allowing the user to scroll to view all the data available in the data set.

The following steps outline how to make use of the InfiniteScroller control:

Step 1: Including required dependencies

The following dependencies need to be included in your page:
Javascript:

« itemcache.js

+ cached.mail.controller.js

+ YUI Selector

« YUI Element

+ YUI DataSource

« YUI DataTable

- infinitescroller.js
CSS:

« YUI Skin Sam DataTable CSS

« infinitescroller.css

Step 2: Instantiating the InfiniteScroller Ul control

The InfiniteScroller control accepts a single configuration object in order to initialize it. The
following configuration properties are available:

VDE LJC [J U

container String | (Required) The parent DOM container in which to
HTMLElement render the InfiniteScroller
columns Object (Required) A list of column objects to be rendered in
the InfiniteScroller (see Column Definitions below)

v1.0
30of 10
© 2010, Nitido Inc. Proprietary and Confidential — All rights reserved.

@ NITIDO

dataSource

VDE

NIM.util.DataSource

(Required) A NIM.util.DataSource instance (see Data
Source Definition below)

sortedBy

Object

An object defining the initial sort column for the
InfiniteScroller. The object contains the following
properties:

+ key: This is the column's key to set the initial sort
order for the InfiniteScroller

« dir: The direction to sort (available options:
NIM.ui.InfiniteScroller. SORT_ASC and
NIM.ui.InfiniteScroller. SORT_DESC)

MSG_LOADING

String

The string to display when messages are loading in
the InfiniteScroller

MSG_EMPTY

String

The string to display when there are no records in the
InfiniteScroller

prefetch

Object

An object to indicate the table should be preloaded
with data. The object contains the following
properties:

- handler: The callback function to call in order to
indicate which records should be loaded. The
function should accept the following
parameters:

- data: An object containing the following
properties:

. start: The start offset/index of the viewable
segment of rows to sort

- end: The end offset/index of the viewable
segment of rows to sort

« scope: The object to set as the execution scope of
the handler function

v1.0
4 of 10

© 2010, Nitido Inc. Proprietary and Confidential — All rights reserved.

@ NITIDO

\

formatRow

VDE JE [J O

HTMLFunction A function to call to perform any custom formatting for
the table row. The function should accept the
following parameters:

+ elTr: The DOM node representing the row in the
table

- record: The Record object for the row in the table

dragdrop

NIM.ui.BaseDDProxy | A drag and drop proxy object to support drag and
drop in the InfiniteScroller

Example:

var myScrollGrid = new NIM.ui.InfiniteScroller({
container: "scrollContainer",
columns: orderedColumns,
dataSource: dataSource,
sortedBy: {
key:
dir: NIM.ui.InfiniteScroller.SORT_ASC

¥

MSG_LOADING: "Loading messages...",
MSG_EMPTY: "No messages in folder",
prefetch: {

handler: loadMyData,

scope: this

¥

formatRow: myCustomRowFormatter,
dragdrop: myCustomMessagelistProxy

s

"date"’

Column Definitions:

Columns are defined as objects containing the following properties:

v1.0
50f 10
© 2010, Nitido Inc. Proprietary and Confidential — All rights reserved.

@ NITIDO

key String (Required) The unique name assigned to each Column. When a
Column key maps to a DataSource field, cells of the Column will
automatically populate with the the corresponding data. If a key is
not defined in the Column definition, one will be auto-generated.

field String The DataSource field mapped to the Column. By default, the field
value is assigned to be the Column's key. Implementers may
specify a different field explicitly in the Column definition. This
feature is useful when mapping multiple Columns to a shared field,
since keys must remain unique, or when the field name contains
characters invalid for DOM or CSS usage.

label String By default, the Column's label is populated with the Column's key.
Supply a label to display a different header.

formatter | HTMLFunction | A function or a pointer to a function to handle HTML formatting of

cell data.

minWidth | Number Minimum pixel width. Please note that minWidth validation is
executed after cells are rendered, which may cause a visual flicker
of content.

resizeable | Boolean True if Column is resizeable.

width Number Pixel width. (nb: It is recommended to set the column's width using

CSS rather than hard coding the width, as it allows for easier
customization without having to change the Javascript code. See
"Styling Column Widths" below).

Columns are displayed in the order in which they are defined.

Example:

v1.0
6 of 10
© 2010, Nitido Inc. Proprietary and Confidential — All rights reserved.

@ NITIDO

var columns = {
attachments: { key: "attachments", formatter: this.formatAttachment, label: "%",
sortable: true, resizeable: false, minWidth: 35 },

sender: { key: "sender", formatter: this.formatSender, label: "Sender", sortable:
true, resizeable: true, minWidth: 100 },

subject: { key: "subject", formatter: this.formatSubject, label: "Subject",
sortable: true, resizeable: true, minWidth: 150 },

date: { key: "date", label: "Date", formatter: this.formatDate, sortable: true,
resizeable: true, minWidth: 100 },

size: { key: "size", label: "Size", formatter: this.formatSize, sortable: true,
resizeable: true, minWidth: 35 },

checked: { key: "checked", formatter: NIM.ui.InfiniteScroller.COLUMN_CHECKBOX,
selectAll: true, resizeable: false }

hE

Styling Column Widths:

It is recommended to set the width of a column through CSS rather than JavaScript. This allows
for easier customization of the column width (ie: as per a client's requirement). A CSS hook is
provided for each column when it is created by the InfiniteScroller. A class name is assigned to
each column using the following format:

« col-<column-key>

<column-key> indicates the column's key (specified when the columns were created). By
exposing this CSS hook, setting the width of a column is easily accomplished through CSS:

Example:

.col-mycolumnkey{
width: 100px;

}

Data Source Definition:

A DataSource provides a common configurable interface for which other components can fetch
tabular data from. It is a required dependency of the InfiniteScroller control.

To create a DataSource object, simply instantiate it:

v1.0
7 of 10
© 2010, Nitido Inc. Proprietary and Confidential — All rights reserved.

@ NITIDO

Example:

var myDataSource = new NIM.util.DataSource();

DataSource uses a responseSchema to determine what data gets parsed out for use by the calling
widget. Defining a schema for your data allows DataSource to cache and return only the data
consumed by Ul controls. A responseSchema is an array of strings that define the fields of the
data it is storing. Defining a schema can be done as follows:

Example:

var dataSource = new NIM.util.DataSource();
dataSource.responseSchema = {
fields: ["propertyl", "property2", "property3"]

}

Please note that the order of the fields is irrelevant since the name of the field maps to result data,
and data values that don't have a defined field are ignored.

Step 3: Subscribing to the InfiniteScroller's events

The InfiniteScroller control provides a robust Custom Event model to allow you to seamlessly
integrate and expand upon its built-in fuctionality. The InfiniteScroller fires the following Custom

Events:

dataChangeEvent(oArgs) Fired when there has been | « 0Args.start. The start offset/index of
a change to the data being | the viewable segment of rows to
displayed in the control (ie:| sort

user has scrolled, and new

records need to be « 0Args.end: The end offset/index of
loaded) the viewable segment of rows to
sort
v1.0
8of 10

© 2010, Nitido Inc. Proprietary and Confidential — All rights reserved.

@ NITIDO

columnSortEvent(oArgs)

Fired when a column is
sorted.

« 0Args.column: The Column's key

« OArgs.order: The sort order

(NIM.ui.InfiniteScroller. SORT_ASC
or
NIM.ui.InfiniteScroller. SORT_DESC

)

OArgs.start. start: The start offset/
index of the viewable segment of
rows to sort

0Args.end: The end offset/index of
the viewable segment of rows to
sort

selectAllClickEvent(oArgs)

Fired when a column
defined as a
NIM.ui.InfiniteScroller.COL
UMN_CHECKBOX with
selectAll behaviour is
clicked

oArgs.checked: True if select all is
checked

checkboxClickEvent(oArgs)

Fired when a CHECKBOX
element is clicked

oArgs.checked: True if the item
was checked

oArgs.element: The DOM element
reference of the checkbox element

oArgs.recordld: The record ID
corresponding to the checked row

rowClickEvent(oArgs)

Fired when a row has a
click

oArgs.recordld: The record ID
corresponding to the clicked row

rowMouseoverEvent(oArgs

)

Fired when a row has a
mouseover

oArgs.recordld: The record ID
corresponding to the clicked row

rowMouseoutEvent(0Args)

Fired when a row has a
mouseout

oArgs.recordld: The record ID
corresponding to the clicked row

rowDragStartEvent(oArgs)

Fired when a row drag has
started.

oArgs.recordld: The record ID
corresponding to the clicked row

rowDragEndEvent(oArgs)

Fired when a row drag has
ended.

oArgs.recordld: The record ID
corresponding to the clicked row

90of 10

v1.0

© 2010, Nitido Inc. Proprietary and Confidential — All rights reserved.

@ NITIDO

Subscribing to any of its events can be done as follows:

Example:

function onDataChange(oArgs){
// need to load records from start to end
myController.load(oArgs.start, oArgs.end);
b

myScrollGrid.subscribe("dataChangeEvent", onDataChange, this, true);

The subscribe method takes the following parameters:

Name ype Description

p_type String The name of the event

p_fn HTMLFunction | The callback function to execute when the event fires

p_obj Object An object to be passed along when the event fires

p_override | Boolean IIf true, the obj passed in becomes the execution scope of the
istener

Step 4: Updating the InfiniteScroller's row data

The InfiniteScroller exposes two methods to render its data:

Name Description Parameters
setTotalRows | Sets the total number of rows in the totalRows: The total number of rows in
table the entire record set

updateData Updates the table's RecordSet with the | rows: Array of rows to render
given rows and updates the Ul with the
new rows

v1.0
10 of 10
© 2010, Nitido Inc. Proprietary and Confidential — All rights reserved.

